
utreexo
 full nodes in kilobytes

Tadge Dryja

2019-09-09
edge / dev++ / scaling
Tel Aviv University

Current blockchain
size: big.

history: 253GB
(only goes up)

current state: 3.5+GB
(mostly goes up)

~/.bitcoin$ du -h
253G ./blocks
3.5G ./chainstate

utxos
they're pretty small, less than 64
bytes for everything
(script, amount, outpoint...)

small, but lots of em! ~60M now

moar utxos

source: statoshi.info

accumulators
wouldn't it be cool if we didn't
store the utxo set at all, but people
could prove their coins exist?

accumulators!

wallets
wallets track their own utxos

if you need to update proofs after
every add / remove, do so to your
utxos.

only 10s of utxos per wallet, so no
problem, right...?

bootstrapping
problem: transition

I'm the first accumulator node. I've
got proofs for all my utxos.

But nobody gives me proofs for
anything! I can't validate

bridge node
The network needs, at least
temporarily, a "Bridge Node"

Bridge Nodes maintain proofs for
EVERY utxo

problematic for RSA accumulators
where proof updates can't be
aggregated

accumulators
a Merkle tree is like an accumulator.
...but you can't add to it if you
only know the root

keep only the top (root)

prove inclusion of a leaf by giving a
branch

utxo accumulator
let's make a hash-based accumulator
for UTXOs!

A bridge node would just store the
whole tree, and updates to the tree
are inherently aggregated

Need to use a bunch of trees -
O(log(n)) instead of O(1)

perfect forest
first, how to add leaves

Then how to delete leaves. More
complex & novel.

tree
It's got 4
leaves

tree
only keep the
root (top)

forest
Add a leaf -> 5
Now there are 2
trees.

forest
Add another
leaf -> 6.
those 2 form
their own tree.

forest
Add another
leaf -> 6.
those 2 form
their own tree.

forest
Add again -> 7
3 trees

tree
Add another.
Now there are 8
leaves, and we
know 4 of them.

tree
combine...

tree
combine..

tree
combine..

tree
combine..

tree
forget all but
the top

tree
It's got 8
leaves

perfect forest adding
adding new leaves is pretty cool

we can add on the bottom right, and
always have enough data to create a
forest of perfect trees (all trees
have 2n leaves)

deleting
delete maintaining perfect trees,
with no empty leaves

Here's how!

First, prove. Then, row by row:
twin / swap / root
then up to the next row

deleting
basic idea (visuals to follow)

twin: skip over two deleted siblings

swap: move nodes around to get twin pairs
of deletions

root: move to or from the root on that
level
(note twin & swap are optimizations, you could do it with just
root, 1 at a time)

delete example 1

0 1 2 3

8 9

12

4 5 6

10

delete 2

delete example 1

0 1 2 3

8 9

12

4 5 6

10

delete 2

proof is 3, 8

delete example 1

0 1 6 3

8 9

12

4 5

10

6:root on row 1

move to 2

delete example 1

0 1 6 3

8 9

12

4 5

10

compute new 9

compute new 12

delete example 1

0 1 6 3

8 9

12

4 5

10

discard 6, 3,

8, 9

done

delete example 2

0 1 2 3

8 9

12

delete 2

(4 leaves)

delete example 2

0 1 2 3

8 9

12

proof is 3, 8

delete example 2

0 1 3

8 9

12

3 becomes root

delete example 2

0 1 3

8

12

8 becomes root

delete example 2

0 1 3

8

12 deleted

done

delete example 3

0 1 2 3

8 9

12

4 5 6

10

delete 2, 3, 4

delete example 3

0 1 2 3

8 9

12

4 5 6

10

proof is 5, 8

row 0: twin

0 1 2 3

8 9

12

4 5 6

10

2, 3 are twins,

OK

row 0: swap

0 1 2 3

8 9

12

4 5 6

10

nothing to swap

row 0: root

0 1 2 3

8 9

12

4 5 6

10

4 last deletion,

6 is root. 6

moves to 4

row 0: root

0 1 2 3

8 9

12

4 56

10

4 last deletion,

6 is root. 6

moves to 4

row 0 -> row 1

0 1 2 3

8 9

12

4 56

10

delete 9

row 0 -> row 1

0 1 2 3

8 9

12

4 56

10

delete 9

row 1: no twin / swap

0 1 2 3

8 9

12

4 56

10

only 1 deletion,

go to root phase

row 1: root

0 1 2 3

8 9

12

4 56

10

there is a root,

10

move 10 to 9

row 1: root

0 1 2 3

8 9

12

4 56

10

there is a root,

10

move 10 to 9

row 1: done

0 1 2 3

8 9

12

4 56

10

no more

deletions; we're

done!

compute new root

at 12

row 1: done

0 1 2 3

8 9

12

4 56

10

no more

deletions; we're

done!

compute new root

at 12

full node
Can run a node that validates every
transaction and signature, while
storing very little.

Every transaction now needs to prove
that the coins it spends exist,
because we don't save them to disk.

bridge network

full
node

full
node

bridge
node

mini
node

mini
node

transactions
transaction & proofs

proof sizes
biggest downside: now there are all
these proofs! How big are they?

1 proof is around 20 hashes, with
5000 inputs in a block, that's 3.2MB!
4X retroactive block size increase!

Need ways to cut that down:

proof sizes: utxo lifespan

proof size
Naively, proofs are several times the
transactions. IBD would be ~600GB of
proofs (+250GB of tx data!)

But proofs aggregate in a block, as
we saw. That brings IBD down to 7.5G
hashes (~250GB)

IBD hints
The IBD server "knows the future";
the client is downloading block 50,
but the server has up to block 9000.

The server can give hints about what
happens next. Which leaves get
deleted soon, and thus which to
remember.

Results: IBD to block 546000

no consensus? no problem
Not a fork. Permission not required!

Need to start with a bridge node, and
archive nodes which send block proofs

on github! many things to optimize!
github.com / mit-dci / utreexo

issues! PRs! IRC #utreexo

