
Schnorr,
Adaptor Sigs
and Statechains
Ruben Somsen

What will be covered?

- 5 min recap of Statechains

- A crash course on Schnorr

- Adaptor Signatures

- Atomic transfers in Statechains

Statechains
5 min recap

Statechains

- 2-of-2 channel between “Statechain entity” and users

- Transfer entire UTXOs (one chain each)

- More secure thanks to on-chain redemption

- Minimum complexity, contracts enforced on-chain

Statechain

B

AXB

BAX

Bitcoin

1 BTC

Statechain

B

C

AXB

BAX

CAX

Bitcoin

1 BTC

Statechain

B

C

AXB

BAX

CAX

Bitcoin

1 BTC

eltoo

2 BTC

C

Swapping to smaller amounts

1 BTC

B

1 BTC

B

C

B

Swapping to smaller amounts

B

C

B

C

2 BTC1 BTC1 BTC

C

B

Possible with other coins

B

C

B

C

200 LTC1 BTC1 BTC

C

Money can get stolen if not atomic!

B

C

B

C

200 LTC1 BTC1 BTC

!?

E

CoinSwap (off-chain coinjoin)

DC

1 BTC1 BTC1 BTC

F

1 BTC

B

1 BTC

E

J

CoinSwap (off-chain coinjoin)

D

I

C

H

1 BTC1 BTC1 BTC

F

K

1 BTC

B

G

1 BTC

B

AXB

BAX

Lightning Channel Creation

1 BTC

B

BC

AXB

BAX

BCAX

Lightning Channel Creation

1 BTC

B

BC

AXB

BAX

BCAX

Lightning Channel Creation

1 BTC

B
BC

C

0.9 BTC

0.1 BTC

Schnorr
Crash
Course

Schnorr

- Promise: simple math

- A solid understanding of the basics makes it possible to
understand many cool things:

Taproot, Pedersen Commitments, Ring Signatures, Confidential
Transactions, Mimblewimble, Bulletproofs*, Adaptor Sigs...

- Don’t just understand it, grok it!

One Basic Assumption

- Cryptography uses special numbers (curve points)

- These special numbers are limited:
you can add (+) and subtract (-), nothing else

- Example: 5 + 3 = 8 5 * 3 = ??

Capital Letters

- Special numbers are written in capital letters

- Example: A + B = C

- We can multiply special numbers by normal numbers:
2A = A + A 3A = A + A + A

- We are still only using addition!

Possible to calculate?

A + B Yes, we can add two special numbers
2A + 2A Yes, this is A + A + A + A = 4A
2C + 3C Yes, this is 5C
2A - 3B Yes, (A + A) - (B + B + B)

B * B No, we can only add/subtract special numbers
A * 2C No, we can only add/subtract special numbers
2D / 3D No, we can only add/subtract special numbers

Possible to calculate x and y?

2E + xE = 5E Yes, x = 3 ((E + E) + (E + E + E))

xF + yF = 8F Infinite possibilities (e.g. x=108, y=-100)

6G + xG = yG Infinite possibilities (e.g. x=94, y=100)

You can’t resolve two variables

Reversing a calculation

- If 5A = E, can we get x=5 from knowing just xA = E?

- Trial and error:
E - A = D
D - A = C
C - A = B
B - A = A Found it!

- Can we reverse 97639273952850352803528532A = F?
Takes forever... Impossible!

Efficiently going forward

- Isn’t 97639273952850352803528532A = F
equally slow to calculate? No, because:

A + A = 2A
2A + 2A = 4A
4A + 4A = 8A (and so on)

- Doubling the number with each step makes it quick to
get to a huge number (but impossibly slow to reverse!)

Keys and
Signatures

Private and Public Keys

- Given: starting point “G” (everybody knows G)

- We pick a huge random number as our private key:
a = 97639273952850352803528532

- private key * G = public key (pseudonymous identity)

- aG = A

Proving you know the private key of A

- Note: this method has a flaw!

- Pick another huge random number r*G = R

- Calculate r + a = s

- Give R and s to the verifier

- Verifier calculates R + A = s*G

Proving you know the private key of A

- Why does R + A = s*G prove you know a?

- Recall our example: 6G + xG = yG two variables

- Calculating s requires knowledge of both secrets (r + a)

- Flaw: if R = r*G - A, then you’re calculating R - A + A

Fixing the flaw and adding a message

- Introduce e = hash(R)
- Prover: r + e*a = s
- Verifier: R + e*A = s*G

- Impossible to cheat:
R = r*G - e*A (impossible: e depends on R (e.g. x = x - 2))

Easy to add a message:
e = hash(R, message)

Adaptor
Signatures

Adaptor Signatures

- High level: incomplete signatures, which can be
completed with a secret from another signature

- Normal Schnorr: R + e*A = s *G
- Incomplete adaptor signature: (R+D) + e*A = s *G
- Completed adaptor signature: (R+D) + e*A = (s+d)*G

- Multiple secrets can be combined for multiple sigs:
D1 + D2 + D3 = D (MuSig)

Adaptor Signatures

- Three incomplete adaptor sigs, everyone gets a copy:
(R1+D) + e*A = s1 *G
(R2+D) + e*B = s2 *G
(R3+D) + e*C = s3 *G

- Everyone shares their secrets: d1 +d2 + d3 = d

- Can’t withhold a secret, publishing your sig reveals d:
e.g. [s, R] where s = s3 + d, meaning s - s3 = d

C

Recall our atomic issue

B

C

B

C

200 LTC1 BTC1 BTC

!?

C

Now B can complete the signature

B

C

B

C

200 LTC1 BTC1 BTC

B

Thank you

