Schnorr, Adaptor Sigs and Statechains

Ruben Somsen

What will be covered?

- 5 min recap of Statechains
- A crash course on Schnorr
- Adaptor Signatures
- Atomic transfers in Statechains

Statechains

5 min recap

Statechains

- 2-of-2 channel between "Statechain entity" and users
- Transfer entire UTXOs (one chain each)
- More secure thanks to on-chain redemption
- Minimum complexity, contracts enforced on-chain

Bitcoin

Statechain

Bitcoin

Statechain

Bitcoin

Statechain

1 BTC

Swapping to smaller amounts

$$
1 \text { BTC } 1 \text { BTC } 2 \text { BTC }
$$

Swapping to smaller amounts

Possible with other coins

1 BTC 1 BTC 200 LTC

Money can get stolen if not atomic!

$$
1 \text { BTC } 1 \text { BTC } 200 \text { LTC }
$$

CoinSwap (off-chain coinjoin)

1 BTC 1 BTC 1 BTC 1 BTC 1 BTC

CoinSwap (off-chain coinjoin)

$$
1 \text { BTC } 1 \text { BTC }
$$

Lightning Channel Creation

1 BTC

B

Lightning Channel Creation

 1 BTC

Lightning Channel Creation

 1 BTC

Schnorr Crash

 Course
Schnorr

- Promise: simple math
- A solid understanding of the basics makes it possible to understand many cool things:

Taproot, Pedersen Commitments, Ring Signatures, Confidential Transactions, Mimblewimble, Bulletproofs*, Adaptor Sigs...

- Don’t just understand it, grok it!

One Basic Assumption

- Cryptography uses special numbers (curve points)
- These special numbers are limited: you can add (+) and subtract (-), nothing else
- Example: $5+3=8 \quad 5$ * $3=? ?$

Capital Letters

- Special numbers are written in capital letters
- Example: A + B = C
- We can multiply special numbers by normal numbers: $2 A=A+A \quad 3 A=A+A+A$
- We are still only using addition!

Possible to calculate?

$A+B \quad$ Yes, we can add two special numbers
$2 A+2 A$ Yes, this is $A+A+A+A=4 A$
$2 C+3 C$ Yes, this is $5 C$
2A-3B Yes, $(A+A)-(B+B+B)$

B * B No, we can only add/subtract special numbers
A * 2 C
2D / 3D No, we can only add/subtract special numbers No, we can only add/subtract special numbers

Possible to calculate \mathbf{x} and \mathbf{y} ?

$2 E+x E=5 E \quad Y e s, x=3((E+E)+(E+E+E))$
$\mathbf{x F}+\mathbf{y F}=8 \mathrm{~F} \quad$ Infinite possibilities (e.g. $x=108, y=-100$)
$6 G+x G=y G \quad$ Infinite possibilities (e.g. $x=94, y=100$)
You can't resolve two variables

Reversing a calculation

- If $5 \mathrm{~A}=\mathrm{E}$, can we get $\mathrm{x}=5$ from knowing just $\mathrm{xA}=\mathrm{E}$?
- Trial and error:

$$
\begin{aligned}
& E-A=D \\
& D-A=C \\
& C-A=B \\
& B-A=A \quad \text { Found it! }
\end{aligned}
$$

- Can we reverse $97639273952850352803528532 \mathrm{~A}=\mathrm{F}$? Takes forever... Impossible!

Efficiently going forward

- Isn’t 97639273952850352803528532A = F equally slow to calculate? No, because:

$$
\begin{aligned}
& A+A=2 A \\
& 2 A+2 A=4 A \\
& 4 A+4 A=8 A \text { (and so on) }
\end{aligned}
$$

- Doubling the number with each step makes it quick to get to a huge number (but impossibly slow to reverse!)

Keys and Signatures

Private and Public Keys

- Given: starting point "G" (everybody knows G)
- We pick a huge random number as our private key: $\mathbf{a}=97639273952850352803528532$
- private key * G = public key (pseudonymous identity)
- $\mathbf{a G}=\mathrm{A}$

Proving you know the private key of A

- Note: this method has a flaw!
- Pick another huge random number r $\mathrm{G}=\mathrm{R}$
- Calculater + $\mathbf{a}=\mathbf{s}$
- Give R and s to the verifier
- Verifier calculates $\mathrm{R}+\mathbf{A}=\mathbf{s}^{\star} \mathrm{G}$

Proving you know the private key of A

- Why does $\mathrm{R}+\mathbf{A}=\mathrm{s}^{*} \mathrm{G}$ prove you know a ?
- Recall our example: $6 G+x G=y G \quad$ two variables
- Calculating s requires knowledge of both secrets $(r+\mathbf{a})$
- Flaw: if R = r*G - A, then you're calculating R - A + A

Fixing the flaw and adding a message

- Introduce e = hash(R)
- Prover: $r+\mathbf{e}^{*} \mathbf{a}=\mathbf{s}$
- Verifier: R + $\mathbf{e}^{\star} A=s^{\star} G$
- Impossible to cheat:
$R=r * G-e^{*} \mathbf{A}$ (impossible: e depends on $R($ e.g. $x=x-2)$)

Easy to add a message:
e = hash(R , message)

Adaptor
Signatures

Adaptor Signatures

- High level: incomplete signatures, which can be completed with a secret from another signature
- Normal Schnorr:

$$
\begin{array}{lrl}
R \quad+e^{*} A & =s & * G \\
(R+D)+e^{*} A & =s & { }^{*} G \\
(R+D)+e^{\star} A=(s+d) &
\end{array}
$$

- Multiple secrets can be combined for multiple sigs: D1 + D2 + D3 = D (MuSig)

Adaptor Signatures

- Three incomplete adaptor sigs, everyone gets a copy: $(R 1+D)+e * A=s 1 \quad * G$ $(R 2+D)+e * B=s 2 \quad * G$ (R3+D) $+e^{*} C=s 3$ *G
- Everyone shares their secrets: d1 +d2 + d3 = d
- Can't withhold a secret, publishing your sig reveals d: e.g. $[s, R]$ where $s=s 3+d$, meaning $s-s 3=d$

Recall our atomic issue

1 BTC
 1 BTC
 200 LTC

Now B can complete the signature

$$
1 \text { BTC } 1 \text { BTC } 200 \text { LTC }
$$

Thank you

