
Hardware wallets
issues and best practices

stepan@cryptoadvance.io

@StepanSnigirev

Overview

- Communication channel
- Microcontroller(s)
- Trusted peripherals

Components

- Minimise the attack surface
- Avoid remote attacks
- Mitigate hardware attacks

Secure the key

Overview

- Random numbers
- Hardware attacks
- PIN code and PIN counter
- Secure key storage

Secure key storage and generation

Firmware security

A few more hints

- Secure boot
- Memory protection
- Supply chain

- Communication channels
- Hardware architecture
- Anti-tamper measures
- Platforms and languages

Protocol design
- PSBT
- Change detection
- Multisignature

Protocol design

- BIP-32 root private key
Hardware wallet knows

- Total amount being spent and where it goes:
- fee
- destination address and amount
- change address and amount (optional)

User needs to verify

- How to derive keys for signing
- What script is used in the prevouts
- What is the amount of prevouts (segwit)
- How to verify change address

Hardware wallet needs to know

Partially Signed Bitcoin Transactions

- Full prevout (segwit) - amount & scriptPubKey
- Full previous transaction (legacy)
- Redeem script
- Witness script
- Derivation path (i.e. m/49h/0h/0h/0/32)

Inputs scope

- Unsigned transaction
- Cosigner’s xpubs (new)

Global scope

- Redeem script
- Witness script
- Derivation path (i.e. m/49h/0h/0h/1/24)

Outputs scope (if known)

Change detection

Input
3GGtfJQYAjxz4Wf29mStxrgL9HRgnjUS5s
P2SH_WPKH(m/49h/0h/0h/0/32)

Outputs: change or not?
3LeRQoJs8s8S3VQi8wUPBXEn2sSKLfCFti
P2SH_WPKH(m/49h/0h/0h/1/27)
bc1q7v4cs8dtxge2qvn6fz36th0vqhpgwhz3x2e86d
P2WPKH(m/49h/0h/0h/1/27)

36QzmK1agc7pRdb2ctSz1kvpydpwkQXVJj
P2SH_WPKH(m/49h/0h/0h/1/99243234)(!)

3DNUhBGTCgU85hzkj5coZSk8yErcsETQja
P2SH_WPKH(m/49h/0h/1h/1/27)(!)

- Redeem script
- Witness script
- Derivation path (i.e. m/49h/0h/0h/1/24)

Outputs scope (if known)

Multisig

Input
3GGtfJQYAjxz4Wf29mStxrgL9HRgnjUS5s

Outputs: change or not?

2 of 3 multisig:
- m/48h/0h/0h/1h/0/32
- <cosigner1>/48h/0h/0h/1h/0/32
- <cosigner2>/48h/0h/0h/1h/0/32

3LmuWLqGdJaZFpuVDZucrTiUqASgQTwZQM

2 of 3 multisig:
- m/48h/0h/0h/1h/1/27
- <cosigner1>/48h/0h/0h/1h/1/27
- <cosigner2>/48h/0h/0h/1h/1/27

- Redeem script
- Witness script
- Derivation path (i.e. m/49h/0h/0h/1/24)

Outputs scope (if known)
- Unsigned transaction
- Cosigner’s xpubs (new)

Global scope

Cosigners
- <cosigner1>/48h/0h/0h/1h : xpub1
- <cosigner2>/48h/0h/0h/1h : xpub2

Secure key storage and generation

Mnemonic phrase
Recovery phrase, BIP-39

f34b3e256b8b8bb9cf2f3e73e423521a

Take a random number:

Convert to binary, add checksum:

11110011010 01011001111 10001001010 11010111000 10111000101 11011100111
00111100101 11100111110 01110011111 00100001000 11010100100 00110101100

Split, convert to words:
viable fly matter strike reward table device treat initial canal stand culture

- TRNG
- User input
- Two oscillators
- Antenna noise

Random sources:

* Now we also have Shamir Secret Sharing

Mnemonic phrase
Password and master key derivation

Take the mnemonic:
viable fly matter strike reward table device treat initial canal stand culture

Hash it 2048 times with the passphrase:

PBKDF2(password = mnemonic, salt = “mnemonic”+password, 2048).read(64)

Use the result as master private key:

93fb9d28d8f8e60f0298f638b1c7340bb014f708daca29d47535dc0339b1ebd1
ab819774d0cf931676302cc3b79d5e01127e91472543be4e84ebc5f7ff5676e4

chain code:
private key:

Mnemonic phrase
Problems and discussions

Depends on the dictionary:
- Limited set of languages
- Only English is widely supported

Hash-based checksum:
- Impossible to generate by a human
- Checksum is based on entropy

Types of hardware attacks

- Timing attack
- Differential power analysis
- Data remanence attack
- Electromagnetic radiation
- much more…

Side channels

- Clock glitching
- Voltage glitching
- Shooting with a laser
- much more…

Fault injection

Even if your software is perfect, hardware is not

C
lo

ck
Su

pp
ly

 v
ol

ta
ge

Time

Instruction pointer ++

Instruction execution

Time

Instruction execution

PIN code

- Do not store “correct PIN” - use cryptographic functions (i.e. HMAC)

- Increase the PIN counter before checking the PIN

- Use checksum for the PIN counter (i.e. use 01 for 0 and 10 for 1)

- Do not load private key to memory until PIN check is passed

- Encrypt the private key with a secret that includes PIN code

- Think of device verification method

Best practices

Side channel attacks (i.e. Trezor, March 2019)

Simple conditional reset

Fault injection (i.e. laser beam on the memory region)

Data remanence attack (i.e. Trezor, August 2017)

Trezor Storage is a good library

Evil Maid attack, ColdCard’s double PIN technique is interesting

Key storage

- Put secrets in flash & memory before everything else

- Protect secrets with not readable bytes on edges

- Authenticate all information with private key (i.e. cosigners)

- Disallow access to secret keys from unsecure functions

- Physical isolation is the best

- Use a secure element if you can

Best practices

Glitching (i.e. Trezor, March 2019)

Glitching

Especially if it is stored on external chip

Use Memory Management Unit / Memory Protection Unit / TrustZone

Just add another microcontroller to do all insecure stuff

They are designed to protect secrets from hardware attacks

Firmware security

- Use a secure bootloader that verifies the firmware

- Use a unique secret & public key per device

- Don’t allow firmware downgrades

- Disable debug interface, LOL

Best practices

Don’t forget about key rotation & invalidation mechanism

Helps against supply chain attack

A few more hints

- Unidirectional communication channel is the best

- Consider using PUFs and anti-tamper measures

- Wisely choose a programming language

- Faster is sometimes better

- Use standards

SD card, QR codes, Audio modem with a switch

RAM PUF, anti-tamper switches, active meshes, tamper-evident resin

Pick Python or Embedded Rust over C / C++

Fast MCUs, threading and small feature size makes attacker’s life harder

Support multisig and BIPs

Best practices

Questions?

stepan@cryptoadvance.io

@StepanSnigirev

I have a few toys with me ;)

