
Debugging Bitcoin



Welcome to Bitcoin



Content

1. Preparations

2. Logging

3. Using a debugger

4. Segfault tools



Part 1: Preparations

Install ccache

Deactivate optimization through compiler flags

./configure CXXFLAGS="-O0 -g" CFLAGS="-O0 -g"



Part 2: Logging
 

wat?



Being in the right environment

regtest/debug.log

std::out



Logging from unit tests

Run src/test/test_bitcoin directly with --log-level=all

Can not use LogPrintf()

Use LibBoost functions, like BOOST_TEST_MESSSAGE or BOOST_CHECK_MESSAGE

From source files use fprintf() which prints ot std::err



Unit test logging in action



Logging from functional tests

self.log.info("foo")

Need to run test directly (not through test_runner.py)



Part 3: Using a debugger

gdb or lldb on macOS

Start debugger with an executable

Set breakpoints

Run the executable from the debugger

Inspect variables, step through lines etc.



Debugger from own environment

$ lldb src/bitcoind

(lldb) b blockchain.cpp:123

(lldb) run -regtest



Also works for unit tests



Should be easy for functional tests...

Using Python

Debugging

● import pdb; pdb.set_trace()

But what about debugging the C++ code?



Where is the bitcoind process?

Functional tests launch our bitcoind themselves using a temp folder as datadir

That means we can not simply start it ourselves

We need a gameplan!



Gameplan

1. Start the functional test directly (not 

using test_runner.py) and let them 

start the bitcoind process

2. Pause the functional tests with 

pdb.set_trace()
3. Find the running bitcoind process, 

attach to it using lldb and setting 

breakpoints

4. Then let the test continue (continue in 

pdb) and let it run into our lldb 

breakpoints

5. Optional: May want to remove 60s 

timeout



Demo time!



N/A



Debugging contexts

Test driver Bitcoind context

Manual - bitcoin-cli/RPC - Path: your own bitcoin path
- Log: ENV/debug.log
- Debug: run bitcoind with lldb

Unit tests - src/test/test_bitcoin - Path: /var/
- Log: to std::out with LibBoost
- Debug: Run test_bitcoin with 

lldb

Functional 
tests

- test/functional/test_ru
nner.py (or the test directly)

- Log: self.log.print()
- Debug: pdb

- Path: /var/ with --no-cleanup
- Log: temporary debug.log with 

consolidation tool
- Debug: pdb + lldb



Part 4: Segfault tools

Core dumps

● Need to activate with ulimit -c unlimited and then run in same terminal session

● Run program with segfault

● Find core dump in /cores/*
● Make sure to clean up afterwards

valgrind

● Inspections, used similar to lldb
● valgrind --leak-check=yes src/bitcoind -regtest



http://bit.ly/debugbitcoin

Thank you and questions?


