
Bitcoin Core Functional 
Test Framework



Content

Part 1: Where are we?

Part 2: Test Framework

Part 3: What’s in a test?

Part 4: Example test

Part 5: Missing parts



Part 1: Where are we?



What are functional tests?

Test the application from user/network perspective

In Bitcoin Core: Interactions of user and other nodes through RPC and P2P interfaces

Testing the full stack

Generally slower than unit tests



When do you add/edit functional tests? 

Full Features/Functionality that uses multiple layers of the stack!

RPC inputs/outputs

Logic/behavior relevant for the user

P2P/network behavior



Where are the files?
 
test/* NOT src/test/*

Areas

● feature_* (full features that are not wallet/mining/mempool)

● interface_* (REST, ZMQ etc.)

● mempool_*
● mining_*
● p2p_*
● rpc_*
● tool_* (tool_wallet.py)

● wallet_*



Running tests

Directly (shows INFO log outputs)

● test/functional/feature_rbf.py

Indirectly through test harness (no INFO log outputs)

● test/functional/test_runner.py feature_rbf.py/
● test/functional/test_runner.py test/functional/wallet*

All (parallel)

● test/functional/test_runner.py

Options (e.g. --trace-rpc, --nocleanup etc.)



Part 2: Test Framework



test/test_framework/* (selection)

util.py: asserts and other helper functions

test_framework.py: mainly BitcoinTestFramework class

key.py: ECC math classes and functions (OpenSSL EC_Key wrapper)

script.py: utilities for working with transaction scripts

blocktools.py: helpers for creating blocks and transactions

mininode.py: P2P connectivity helpers, P2PDataStore() etc.



Part 3: What’s in a test?



Documentation and Logs

To explain what you are doing:

Docstrings

Comments

self.log.info(...)



Test class

Test is a subclass of BitcoinTestFramework

Overrides 

- set_test_params() override test parameters

- run_test() override for actual test case

- others for custom setup (see test_framework/test_framework.py)



Node calls

self.nodes[0].add_p2p_connection(BaseNode())

Most RPC calls are undefined methods

Regtest RPC

● generate() etc.

Wait methods

● waitforblockheight() etc.

Global methods like connect nodes



P2P introspection

sync_all(), sync_blocks() etc.

Subclass of P2PInterface with on_* hook method overrides

Used to keep a P2P connection to the node under test

Evaluate messages the node sends out

Examples:

● on_block()
● on_inv()



Part 4: Examples

Getblockchaininfo: https://github.com/bitcoin/bitcoin/blob/master/test/functional/rpc_blockchain.py

https://github.com/bitcoin/bitcoin/blob/master/test/functional/rpc_blockchain.py


Part 5: MISC



Debugging and Logging

Use python debugger (pdb)

import pdb; pdb.set_trace()

Attach pdb/lldb to bitcoind instance

Consolidate logs with combine_logs.py

Logs in temp folder

/path/to/bitcoin/test/functional/combine_logs.py 
'/var/folders/9z/n7rz_6cj3bq__11k5kcrsvvm0000gn/T/bitcoin_func_test_7n
eje5nv'



Get started!

Further reading

● test/README.md
● test/functional/README.md
● test/functional/example_test.py

TODOs for you

● 39 open issues with label “tests”: 

https://github.com/bitcoin/bitcoin/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+
label%3Atests

● Improve test coverage: https://marcofalke.github.io/btc_cov/

https://github.com/bitcoin/bitcoin/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Atests
https://github.com/bitcoin/bitcoin/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Atests
https://marcofalke.github.io/btc_cov/


Thank you and questions?


